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ABSTRACT 
The aim of this study is to provide an analysis on pollutant concentration in surface waters using one – 

dimensional advection diffusion equation with temporally varying coefficients. Numerical and analytical 

solutions are obtained for one - dimensional Advection Diffusion Equations with variable coefficients in a finite 

medium. Finite Difference and Laplace Transforms Methods are applied to solve the Advection Diffusion 

Equation with temporally varying coefficients. Absolute error obtained from comparing analytical and 

numerical solutions at different points reveals that the numerical scheme is accurate. Simulations based on the 

validated numerical scheme are obtained. Simulations on the effect of dispersion and velocity coefficients 

(based on Peclet number) on pollutant concentration show that concentration increases around the source point 

and gradually decreases with increasing distance from the source point. It further shows that concentration is 

higher for Peclet number much greater than one as compared to Peclet numbers much less than or equal to one. 

Effect of temporally varying velocity and dispersion coefficients on pollutant concentration is also presented. 

The findings show that concentration is higher for exponentially decreasing dispersion in an exponentially 

accelerating flow and lower for exponentially increasing dispersion in an exponentially accelerating flow. 

 

KEYWORDS: Advection Diffusion Equation, Finite Difference Method 

 

1. INTRODUCTION 
The transport of pollutants in natural streams such as rivers may be as a result of two processes namely 

dispersion and advection. These processes are prescribed in a mathematical model (Advection Diffusion 

Equation) that describes how pollutants are transported from one region to another. The Advection Diffusion 

Equation (ADE) is a parabolic partial differential equation based on conservation of mass and Fick’s first law. It 

distinguishes two transport modes; the advective transport as a result of pollutant molecules being carried by the 

bulk motion of the fluid and transport due to hydrodynamic dispersion. Hydrodynamic dispersion is the 

combination of molecular diffusion and mechanical dispersion. The effects of advection and hydrodynamic 

dispersion in transportation of pollutant molecules are represented in the ADE as advection and dispersion 

coefficients. The velocity and dispersion coefficients of the ADE may be considered to be constant, spatially 

varying, temporally varying, or spatially and temporally varying. In this study, temporally varying velocity and 

dispersion coefficients are considered. Solutions of partial differential equations that describe transport 

processes have been obtained in various studies using numerical methods such as Finite Difference Method 

(FDM), Finite Element Method (FEM) and Finite Volume Method (FVM).  

 

Andallah & Khatun (2020) obtained a numerical solution for the one - dimensional ADE using explicit centered 

difference and Crank Nicolson schemes (CNS) for a prescribed initial condition. They established that Crank 

Nicolson scheme is unconditionally stable using von Neumann stability criterion. They further performed error 

estimation of forward time central space, centered scheme (FTCSCS), forward time backward space, centered 

space (FTBSCS) and Crank Nicolson schemes to determine the accuracy and rate of convergence of these three 
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schemes. They observed that Crank Nicolson scheme is the most accurate scheme and that FTCSCS and CNS 

show good rate of convergence. An analytical and numerical solution of a one - dimensional ADE with 

uniformly and exponentially increasing forms of sources was determined by Manitcharoen & Pimpunchat 

(2020). Laplace transforms was used to solve the ADE with constant coefficients; and explicit finite difference 

techniques to solve the ADE with spatially varying coefficients. Numerical approximations were compared 

against relative error values. They concluded that the analytical and numerical solutions agreed to a higher 

degree. Alebrahem (2017) applied Forward Time Centered Space (FTCS) to solve a non - trivial transport 

problem using different time step (∆t) and space size (∆x). While imposing Dirichlet boundary conditions, it 

was observed that the results were converging to the exact solution if dispersion coefficient, ∆t and ∆x are small. 

Ahmed (2012) developed a new Finite Difference scheme based on mathematical combination between 

Siemieniuch and Gradwell approximations for time and Dehgans approximation for spatial differences. The new 

scheme was used to determine the numerical solution for a one - dimensional ADE with constant and variable 

coefficients. The numerical solutions were compared with some available analytical solutions and showed a 

good agreement. Tenth order Finite Difference Scheme in space and a fourth order Runge kutta scheme in time 

was applied by Gurarslan et al (2010) to solve a one - dimensional ADE. Numerical experiments demonstrated 

that the schemes were efficient and had higher order accuracy for Pe ≤ 5. Yip (2021) studied pollutant 

transport in a straight narrow channel using upwind finite difference method. They used explicit, backward and 

central differences to discretize the time scale, the advection term and the diffusion terms respectively. The 

numerical model was validated against an existing analytical solution and the results showed good agreement 

between the analytical and numerical solutions. The validated model was applied to different cases of pollutant 

release mechanisms involving continuous and instantaneous pollutant releases, further observing that this model 

could capture the physics of the problem and be able to provide valuable information on the time and spatial 

evolution of pollutant concentration in both cases. When comparing the performance of the forward time 

centered space and the Crank Nicolson schemes for advection diffusion equation with various velocity and 

dispersion parameters, Johari et al (2018) observed that Crank Nicolson schemes were better than the forward 

time centered space in terms of accuracy. A numerical solution of the one dimensional ADE using standard and 

non- standard finite difference schemes was also obtained by Appadu (2013). The researcher used explicit Lax 

Wendroff, Crank Nicolson and a non - standard scheme to determine the solution to the ADE subject to 

specified initial and boundary conditions. It was observed that Crank Nicolson method was the most efficient 

method followed by the non - standard finite difference scheme. In a study aimed at comparing the accuracy of 

four numerical methods in solving a one-dimensional ADE, Kaya & Gharehbaghi (2014) used Finite Difference 

Method (FDM), Fourth Order Finite Difference Method (FOFDM), Finite Volume Method (FVM) and 

Differential Quadrature Method (DQM) in implicit conditions. They deduced that DQM provided better 

accurate results followed by FOFDM. FDM produced worst results. Huang et al (1997) on the other hand 

developed a third order numerical scheme with upwind weighting for solving the solute transport equation. This 

scheme yielded very accurate solutions near sharp concentration fronts, thereby showing its ability to eliminate 

numerical dispersion. However, the scheme was found to suffer from numerical oscillations, and could be 

avoided by employing upwind weighting techniques in the numerical scheme. Solutions obtained after upwind 

weighting were free of numerical oscillations and exhibited negligible numerical dispersion.  

 

In most studies on numerical solution of one - dimensional ADE we encountered, researchers have used FDM to 

solve the ADE with constant coefficients subject to various initial and boundary conditions. Though Ahmed 

(2012) considered spatially varying dispersion and velocity coefficients, their study did not explore temporally 

varying coefficients. Our current study determines pollutant concentration using Finite Difference Method with 

discretization based on forward time central space, centered scheme (FTCSCS). 

 

2. MATERIALS AND METHODS 

Modeling and simulation of pollutant concentration from a point source into surface waters can be broken down 

into the following steps: Formulation of the model (describing the geometry of the domain, introducing sources, 

sinks and dispersion characteristics of the entire domain, introducing the appropriate boundary conditions), 

solving the model using finite differences and simulation of results. In our study, both numerical and analytical 

solutions of the model have been determined. Analytical solutions are obtained to validate the numerical results. 

Simulation of results based on the validated numerical results is presented.  

 

        2.1 Model Formulation 
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Transport of pollutants in rivers is commonly described using processes of advection and diffusion. Based on 

the assumptions that: The flow conditions are unsteady; transport dominantly occurs along the longitudinal 

direction; pollutants are soluble compounds which may be subjected to advection and diffusion processes, 

pollutants are conservative in nature and pollutants emanate from discrete locations, the process of 

transportation of pollutants in surface waters is mathematically described using Advection - Diffusion Equation 

(ADE) 

 
𝜕𝑐(𝑥,𝑡)

𝜕𝑡
− 𝐷(𝑥, 𝑡)

𝜕2𝑐(𝑥,𝑡)

𝜕𝑥2 + 𝑈(𝑥, 𝑡) 
𝜕𝑐(𝑥,𝑡)

𝜕𝑥
=  𝜆(𝑡)𝛿(𝑥 −  𝑆)                                                                                  (1) 

                                                                                       

Where 𝑐(𝑥, 𝑡) is the pollutant concentration. 𝐷(𝑥, 𝑡) and 𝑈(𝑥, 𝑡) are the dispersion and velocity coefficients 

respectively. 𝜆(𝑡)𝛿(𝑥 −  𝑆) represents the source term where 𝜆(𝑡) is the source intensity and 𝛿(𝑥 −  𝑆) is a 

function that mathematically represents a point source. Here S is pollutant source location and 𝛿 is Dirac delta 

function. In our study, both dispersion and velocity coefficients are dependent on time only thus the pollutant 

dispersion and velocity parameters in Equation (1) can be written in terms of initial dispersion 𝐷0 and uniform 

velocity coefficients 𝑈0 as 

 

𝐷(𝑡) = 𝐷0𝑓1(𝑚𝑡)                                                                                                                                                 (2) 

 

𝑈(𝑡) =  𝑈0𝑓2(𝑚𝑡)                                                                                                                                                 (3) 

 

Where 𝑓𝑖(𝑚𝑡), 𝑖 = 1,2 is a function that describes the temporal dependence of the velocity and dispersion 

coefficients, m is the unsteady parameter whose dimension is inverse of time variable t. Substituting Equations 

(2) and (3) in Equation (1) yields 

 
𝜕𝑐(𝑥,𝑡)

𝜕𝑡
− 𝐷0𝑓1(𝑚𝑡)

𝜕2𝑐(𝑥,𝑡)

𝜕𝑥2 + 𝑈0𝑓2(𝑚𝑡) 
𝜕𝑐(𝑥,𝑡)

𝜕𝑥
=  𝜆(𝑡)𝛿(𝑥 −  𝑆)                                                                          (4) 

 

But 𝛿(𝑥 −  𝑆) = 0 for 𝑥 ≠ 𝑆 (Duffy, 2001), Equation (4) becomes 

 
𝜕𝑐(𝑥,𝑡)

𝜕𝑡
− 𝐷0𝑓1(𝑚𝑡)

𝜕2𝑐(𝑥,𝑡)

𝜕𝑥2 +  𝑈0𝑓2(𝑚𝑡) 
𝜕𝑐(𝑥,𝑡)

𝜕𝑥
=  0                                                                                             (5) 

 

Further assuming that no pollution has occurred at some initial time; there is a continuous mass injection of 

pollutants at the point x = 0 and that there is zero concentration gradient at the downstream. The initial and 

boundary conditions used include 

 

𝑐(𝑥, 0) =  0;  0 ≤  𝑥 ≤  𝑙;  𝑡 >  0 (6) 

 

𝑐(0, 𝑡) =  𝐶0;  𝑡 >  0                                                                                                                                             (7) 

 
𝜕𝑐(𝐿,𝑡)

𝜕𝑥
= 0;  𝑡 >  0                                                                                                                                                 (8) 

 

2.2 Solution of Mathematical Model 

We start by rewriting Equations (5) – (8) in non – dimensional form. We use the following dimensionless 

quantities:  

 

 𝑐∗ =
𝑐

𝐶0
;  𝑡∗ =

𝑡𝐷0

𝐿2 ;  𝑥∗ =
𝑥

𝐿
; 𝑃𝑒 =  

𝐿𝑈0

𝐷0
        (9) 

 

Where 𝐶0 is the input concentration, 𝐿 is the length scale of the spatial domain, 𝑡∗ is the time scale and Peclet 

number (𝑃𝑒) is the ratio of advective and diffusive fluxes.  Applying the dimensionless quantities in Equation 

(9) on Equation (5) yields 

 
𝜕𝑐∗

𝜕𝑡∗ = 𝑓1(𝑚𝑡∗)
𝜕2𝑐∗

𝜕𝑥∗2 − 𝑃𝑒𝑓2(𝑚𝑡∗) 
𝜕 𝑐∗

𝜕 𝑥∗                                                                                                                 (10) 
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Non – dimensionalizing the initial and boundary conditions in Equations (6) – (8) yields    

 

𝑐∗ =  0; 𝑡∗ = 0   (11) 

 

𝑐∗ =  1; 𝑥∗ = 0                                                                                                                                                    (12) 

 
𝜕𝑐∗

𝜕𝑥∗ = 0; 𝑥∗ = 𝑙                                                                                                                                                    (13)   

 

Numerical and analytical solutions of Equations (10) – (13) are determined. 

                                  

2.2.1 Numerical Solution                                                          

Finite difference method is applied to solve the dimensionless Equation (10) subject to the initial and boundary 

conditions in Equations (11) – (13). We discretize the domain by dividing the solution domain in the xt - plane 

into equal meshes with grid points, each mesh with step size ∆𝑥∗ by ∆𝑡∗. The interval [0, 𝑙] is divided into 

𝑛 equal parts by the points 𝑥1
∗, 𝑥2

∗, … … … … … , 𝑥𝑛 + 1
∗  with step length ∆𝑥∗ =  

 𝑥𝑛+1
∗  − 𝑥1

∗  

𝑛
. Similarly, the time 

interval is divided into m equal parts by the points  𝑡1
∗, 𝑡2

∗, … … … … … , 𝑡𝑚 + 1
∗  with time step  ∆𝑡∗ =  

 𝑡𝑚+1
∗  −  𝑡1

∗  

𝑚
 . 

We compute 𝑐∗(𝑥𝑖 , 𝑡𝑗) for 𝑖 = 1, 2, … … . . , 𝑛 + 1; 𝑗 = 1,2, … … . , 𝑚 + 1.  We then approximate the difference 

equation into finite difference equations. Using Taylor series expansion for the first and second order 

derivatives, the combination gives rise to either Explicit or Implicit schemes. In this study, an explicit centered 

difference scheme (Forward time Central Space, Centered Scheme (FTCSCS)) is used to determine the solution. 

Discretization of time and space derivatives of 𝑐∗ in Equation (10) using FTCSCS at (𝑖, 𝑗)𝑡ℎ  node is given by  

 

𝜕𝑐∗ 

𝜕𝑡∗ =  
𝑐∗

𝑖
𝑗+1

− 𝑐∗
𝑖
𝑗

∆𝑡∗                                                                                                                                                     (14) 

 

𝜕𝑐∗ 

𝜕𝑥∗ =
𝑐∗

𝑖+1
𝑗

− 𝑐∗
𝑖−1
𝑗

2∆𝑥∗                                                                                                                                                   (15) 

 

𝜕2𝑐∗ 

𝜕𝑥∗2 =
𝑐∗

𝑖 −1
𝑗

− 2𝑐∗
𝑖
𝑗

 + 𝑐∗
𝑖+1

𝑗

∆𝑥∗2                                                                                                                                        (16) 

 

Substituting Equations (14) - (16) in Equation (10) gives: 

 

𝑐∗
𝑖
𝑗+1

= 𝑐∗
𝑖
𝑗
 +∆𝑡∗𝑓1

𝑗
[

𝑐∗
𝑖 −1
𝑗

− 2𝑐∗
𝑖
𝑗

 + 𝑐∗
𝑖+1

𝑗

∆𝑥∗2 ] − ∆𝑡∗𝑓2
𝑗
𝑃𝑒 [

𝑐∗
𝑖+1
𝑗

− 𝑐∗
𝑖−1
𝑗

2∆𝑥∗ ]                                                                       (17)   

                                                                               

Let  𝛾 =  
∆𝑡∗

∆𝑥∗2                                                                                                                                                       (18) 

 

Let  𝜗 =
𝑃𝑒∆𝑡∗

∆𝑥∗                                                                                                                                                        (19) 

 

Rewriting Equation (17) using Equations (18) and (19), then rearranging it according to the time levels on 𝑐∗ 

gives: 

 

𝑐∗
𝑖
𝑗+1

= (𝛾𝑓1
𝑗

+ 
𝜗𝑓2

𝑗

2
) 𝑐∗

𝑖 −1
𝑗

+ (1 − 2𝛾𝑓1
𝑗
) 𝑐∗

𝑖 
𝑗

+ (𝛾𝑓1
𝑗

−  
𝜗𝑓2

𝑗

2
) 𝑐∗

𝑖 + 1
𝑗

      (20) 

Let 

 𝛿 = 𝛾𝑓1
𝑗

+  
𝜗𝑓2

𝑗

2
;  𝛽 =  1 − 2𝛾𝑓1

𝑗
;  𝛼 =  𝛾𝑓1

𝑗
− 

𝜗𝑓2
𝑗

2
                                                                                             (21) 

 

Rewriting Equation (20) using Equation (21) gives: 
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𝑐∗
𝑖
𝑗+1

= 𝛿𝑐∗
𝑖 −1
𝑗

+ 𝛽 𝑐∗
𝑖 
𝑗

+ 𝛼𝑐∗
𝑖 + 1
𝑗

                                                                                                                     (22) 

 

Equation (22) is used for the interior nodes. The initial condition in Equation (11) is discretized as  

 

𝑐∗
𝑖
0 = 𝑐∗(𝑥∗

𝑖 , 0) =  0                                                                                                                                          (23) 

 

The discretized inlet boundary condition in Equation (12) is given by 

𝑐∗
1
𝑗+1

=  1                                                                                                                                                            (24) 

 

To discretize the boundary condition in Equation (13) at 𝑖 = 𝑛, we introduce a ghost boundary node  𝑥𝑛+ 1
∗  and 

its corresponding approximation as  𝑐 𝑛+ 1
∗𝑗

=  𝑐∗( 𝑥𝑛+ 1
∗ , 𝑡𝑗

∗). Then using Equation (13) and the central difference 

formula in Equation (15) at the last boundary ( 𝑥𝑛
∗ ), we get 

                                                                  

𝑐∗
𝑛 + 1
𝑗

=  𝑐∗
𝑛−1
𝑗

                                                                                                                                                    (25) 

 

Rewriting Equation (22) using 𝑖 = 𝑛  

 

𝑐∗
𝑛
𝑗+1 = 𝛿𝑐∗

𝑛−1
𝑗

+ 𝛽 𝑐∗
𝑛 
𝑗 + 𝛼𝑐∗

𝑛 + 1
𝑗

                                                                                                                    (26) 

 

Applying Equation (25) on Equation (26) gives: 

                                                                                  

𝑐∗
𝑛
𝑗+1 = (𝛼 + 𝛿)𝑐∗

𝑛−1
𝑗

+ 𝛽𝑐∗
𝑛 
𝑗                                                                                                                             (27) 

 

Equation (27) is the discretized equation of boundary condition in Equation (13). Using Equations (24), (22) and 

(27), the governing equation and the boundary conditions is expressed as a system of linear equations:  

 

𝑐∗
1
𝑗+1

= 1

       𝑐∗
𝑖
𝑗+1

= 𝛿𝑐∗
𝑖 −1
𝑗

+ 𝛽 𝑐∗
𝑖 
𝑗

+ 𝛼𝑐∗
𝑖 + 1
𝑗

      𝑓𝑜𝑟 𝑖 = 2, … . . , 𝑛 

𝑐∗
𝑛
𝑗+1 = (𝛼 + 𝛿)𝑐∗

𝑛−1
𝑗

+ 𝛽𝑐∗
𝑛 
𝑗

}                                                                           (28)                                  

 

The solution to Equation (28) is obtained iteratively. To ensure stability of the scheme, the parameters 0 ≤ 𝜗 ≤
1

𝑃𝑒
 and 0 ≤  𝛾 ≤  

1

2
  (Andallah L.S. and Khatun, (2020)) are used. 𝜗 and 𝛾 are defined in Equations (18) and (19) 

respectively.  

2.2.2 Analytical Solution 

Analytical solution of Equation (10) subject to the initial and boundary conditions in Equations (11) – (13) is 

determined. Our solution is the dimensionless form of the solution obtained by Kumar et al (2011) for input 

concentration  𝐶0 = 1. Consider the transformation 

 

𝑋∗ = 𝑥
𝑓2(𝑚𝑡∗) 

𝑓1(𝑚𝑡∗) 
                                                                                                                                                      (29) 

 

Rewriting Equation (10) using Equation (29) gives  

 
𝑓1

𝑓2
2

𝜕𝑐∗

𝜕𝑡∗ =
𝜕2𝑐∗

𝜕𝑋∗2 − 𝑃𝑒 
𝜕 𝑐∗

𝜕 𝑋∗                                                                                                                                       (30) 

 

Introducing a new time variable using the transformation  

 

𝑇∗ = ∫
𝑓2

2 

𝑓1 
𝑑𝜏

𝑡∗

0
                                                                                                                                                     (31) 

 

Rewriting Equation (30) using Equation (31) gives  
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𝜕𝑐∗

𝜕𝑇∗ =
𝜕2𝑐∗

𝜕𝑋∗2 − 𝑃𝑒 
𝜕 𝑐∗

𝜕 𝑋∗                                                                                                                                            (32) 

 

Transforming the initial and boundary conditions in Equations (11) – (13) yields    

 

𝑐∗(𝑋∗, 0) =  0  (33) 

 

𝑐∗(0, 𝑇∗) =  1                                                                                                                                                      (34) 

 
𝜕𝑐∗(𝐿,𝑇∗)

𝜕𝑋∗ = 0                                                                                                                                                          (35)   

 

Further application of the transformation 

 

𝑐∗(𝑋∗, 𝑇∗) =  𝐾∗(𝑋∗, 𝑇∗) exp (
𝑃𝑒

2
𝑋∗ −  

𝑃𝑒2

4
𝑇∗ )                                                                                                (36) 

 

to eliminate  
𝜕 𝑐∗

𝜕 𝑋∗  in Equation (32) gives a diffusion equation 

𝜕𝐾∗

𝜕𝑇∗ =
𝜕2𝐾∗

𝜕𝑋∗2                                                                                                                                                            (37) 

 

Transforming Equations (33) – (35) using Equation (36) 

𝐾∗(𝑋∗, 0) =  0  (38) 

 

𝐾∗(0, 𝑇∗) = 𝑒𝜇𝑇∗
 ;  𝜇 =  

𝑃𝑒2

4
                                                                                                                                (39)                                                                                                                                                                 

 
𝜕𝐾∗

𝜕𝑋∗ +  
𝑃𝑒

2
𝐾∗ = 0                                                                                                                                                  (40)   

 

Applying Laplace transforms to Equations (37) – (40) produces 

 
𝑑2𝐾∗

𝑑𝑋∗2 − 𝑝𝐾∗ = 0                                                                                                                                                    (41) 

 

𝐾∗(0, 𝑝) =
1

𝑝− 𝜇
                                                                                                                                                    (42) 

 
𝑑𝐾∗

𝑑𝑋∗ +  
𝑃𝑒

2
𝐾∗ = 0                                                                                                                                                  (43)     

 

Where     𝐾∗(𝑋∗, 𝑝) =  𝐿[𝐾∗(𝑋∗, 𝑇∗)] = ∫ 𝐾∗(𝑋∗, 𝑇∗)𝑒−𝑝𝑇∗
𝑑𝑇∗∞

0
                                                                            

 

The particular solution to Equations (41) – (43) is obtained as  

𝐾∗(𝑋∗, 𝑝) =
1

𝑝− 𝜇
𝑒− √𝑝𝑋∗

                                                                                                                                     (44) 

Applying Laplace inverse on Equation (44) using the tables in Van and Alves (1982) gives the solution to our 

diffusion equation as  

𝐾∗(𝑋∗, 𝑇∗) =  
1

2
[exp ( 

𝑃𝑒2𝑇∗

4
−  

𝑃𝑒𝑋∗

2
 ) 𝑒𝑟𝑓𝑐 ( 

𝑋∗

2√𝑇∗ − 
𝑃𝑒√𝑇∗

2
 ) + 𝑒𝑥𝑝 ( 

𝑃𝑒2𝑇∗

4
+ 

𝑃𝑒𝑋∗

2
 ) 𝑒𝑟𝑓𝑐 ( 

𝑋∗

2√𝑇∗ +  
𝑃𝑒√𝑇∗

2
 )]  (45) 

Inserting Equation (45) in Equation (36) and further applying Equations (29) and (31) gives the analytical 

solution to the model:   

𝑐∗(𝑥∗, 𝑡∗) =  
1

2
[𝑒𝑟𝑓𝑐 ( 

𝑥𝑓2(𝑚𝑡∗) 

2√𝑇∗𝑓1(𝑚𝑡∗)
− 

𝑃𝑒√𝑇∗

2
 ) + 𝑒𝑥𝑝 (  𝑥

𝑓2(𝑚𝑡∗) 

𝑓1(𝑚𝑡∗) 
𝑃𝑒 ) 𝑒𝑟𝑓𝑐 ( 

𝑥𝑓2(𝑚𝑡∗) 

2√𝑇∗𝑓1(𝑚𝑡∗) 
+ 

𝑃𝑒√𝑇∗

2
 )]                (46) 

 

3.  RESULTS AND DISCUSSION 

A comparison of numerical and analytical solutions is provided using the solutions obtained in Equations (28) 

and (46) respectively. A discussion of results based on the simulations of the validated results obtained in 
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Equation (28) is also provided. Results are presented on the basis of effect of various Peclet numbers on 

pollutant concentration and effect of temporally varying velocity and dispersion coefficients with time on 

pollutant concentration.  

 

3.1. Comparison of Analytical and Numerical Solutions 

In this section, we compare the analytical and numerical solutions based on Equations (46) and (28) 

respectively. The simulations are obtained at a fixed time (𝑡∗ = 1) using 𝑈0 = 1.14, 𝐷0 = 1.40 (𝑃𝑒 ~ 1). Both 

velocity and dispersion coefficients are considered as exponentially increasing with time.  

 

 
 

Figure 1: Plot of Analytical and Numerical Solutions of 𝒄∗ against 𝒙∗ when 𝒕∗ = 𝟏 

 

Figure 1 shows concentration profile obtained when analytical (exact) and numerical (approximate) solutions 

are compared. Absolute error is evaluated using concentration values from both the exact (𝑐𝑒
∗) and approximate 

(𝑐𝑎
∗) solutions. The errors obtained at different points are summarized in Table 1: 

 

Table 1: Comparison of Exact and Approximate Solutions 

 

𝑥∗ 𝑐𝑒
∗ 𝑐𝑎

∗  Absolute Error 

1 0.77900 0.787800 8.8 × 10− 3 

2 0.490400 0.506500 1.61 × 10−2 

3 0.239900 0.255700 1.98 × 10− 2 

4 0.088890 0.098870 9.98 × 10− 3 

5 0.024540 0.037690 1.315 × 10−2 

6  0.007038 0.007038 0.00 

7 - 10 0.000000 0.000000 0.00 
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From Table 1 above, we observe that the numerical results obtained using FTCSCS agree with the analytical 

results to a great degree.  We conclude that our scheme is accurate. Simulations obtained in our study are based 

on the numerical scheme. 

 

3.2. Effect of Velocity and Dispersion on Pollutant Concentration 

Both advection and diffusion processes move pollutants from one place to another, but each accomplishes this 

differently. Whereas advection transports pollutant molecules downstream, diffusion transports pollutant 

molecules in both ways regardless of the stream direction. In order to understand the effect of each process on 

pollutant concentration, a comparison of advection and diffusion fluxes is performed using the ratio of their 

scales. This ratio is given by Peclet number (Pe). Simulations are obtained for pollutant concentration when 

𝑃𝑒 ≪ 1, 𝑃𝑒 ~ 1 and 𝑃𝑒 ≫  1. 
 

 

                                  (a)                                                                                     (b) 

 

 
 

(c) 

 
 

Figure 2: Plot of 𝒄∗(𝒙∗) for 𝒕∗ = 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓 𝒂𝒏𝒅 𝟏 for (a) 𝑷𝒆 ≪ 𝟏 (b) 𝑷𝒆 ~ 𝟏 (c) 𝑷𝒆 ≫  𝟏 
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If  𝑃𝑒 ≪ 1, advection term is significantly smaller than diffusion term. The simulations are obtained using 

initial velocity and dispersion coefficients as 𝑈0 = 0.05, 𝐷0 = 1.25 respectively. We observe from Figure 2(a) 

that at a fixed point near the source (𝑥∗ = 0), concentration increases with increasing time. For example at 𝑥∗ = 

2, for 𝑡∗ = 0.25, 𝑐∗ = 0.0472; for 𝑡∗ = 0.5, 𝑐∗ = 0.2393; for 𝑡∗ = 0.75, 𝑐∗ = 0.3673 and for   𝑡∗ = 1, 𝑐∗ =
0.4587. Increase in concentration is as a result of increased spreading of pollutant cloud around the source. 

Pollutant cloud spreads in the medium faster than it is transported downstream. Concentration however becomes 

zero at some distance from the source. This is based on the assumption that pollutants being considered are 

miscible and there are no storage areas or dead zones in the river that would retain pollutants then release them 

after some time. We further observe that at any fixed time, concentration decreases with increasing distance. For 

example when 𝑡∗ = 0.5, for 𝑥∗ = 1, 𝑐∗ = 0.5594; for 𝑥∗ = 2, 𝑐∗ = 0.2393; for 𝑥∗ = 3, 𝑐∗ = 0.07609; 

for 𝑥∗  = 4, 𝑐∗ = 0.01765; for 𝑥∗ = 5, 𝑐∗ = 0.004327;  for 𝑥∗ = 6, 𝑐∗ = 0.000551 and for 𝑥∗ ≥ 7, 𝑐∗ ≈ 0. 

When 𝑃𝑒 ≪ 1, there is minimal spreading of pollutant molecules at some far distance from the source point 

thus less significant effect on the concentration at far distance.  

 

When 𝑃𝑒 ~ 1, the advection and diffusion terms are not significantly different and neither process dominates 

over the other. The results in Figure 2(b) are obtained using initial velocity and dispersion coefficients as  𝑈0 =
1.14, 𝐷0 = 1.40 respectively. We note that at 𝑥∗ = 2, 𝑡∗ = 0.25, 𝑐∗ = 0.0972; for 𝑡∗ = 0.5, 𝑐∗ = 0.4588; 
for 𝑡∗ = 0.75, 𝑐∗ = 0.6657;  and for 𝑡∗ = 1, 𝑐∗ = 0.7943. The high concentration levels around source point 

and gradual decrease of pollutant concentration thereafter is due to the fact that once a mass of pollutant is 

released at a single instant of time in the river, it spreads out as it moves downstream due to molecular diffusion 

caused by random motion of pollutant molecules, spreading caused by the variations of the microscopic 

velocities through the pores in the river and advection due to bulk movement of water. We also observe that for 

a fixed time, concentration decreases with increasing distance. For example, when 𝑡∗ = 0.5: for 𝑥∗ = 1, 𝑐∗ =
0.7616, for 𝑥∗ = 2, 𝑐∗ = 0.4588; for 𝑥∗ = 3, 𝑐∗ = 0.2096, for 𝑥∗  = 4, 𝑐∗ = 0.07062; for 𝑥∗ = 5, 𝑐∗ = 0.2346; 
for 𝑥∗ = 6, 𝑐∗ = 0.00379, for 𝑥∗ = 7, 𝑐∗ = 0.0005803 and for  𝑥∗ ≥ 8, 𝑐∗ ≈ 0. Though concentration  

decreases with distance as we move downstream, concentration in this case at any point downstream is higher as 

compared to when 𝑃𝑒 ≪ 1, due to the effect of advection process during flow.  

 

Simulations are further obtained using initial velocity and dispersion coefficients as 𝑈0 = 4, 𝐷0 = 1.05 

respectively for 𝑃𝑒 ≫  1. In this case, advection term is significantly bigger than the diffusion term. Results in 

Figure 2(c) show that at a fixed point near the source, concentration increases with increasing time and reaches a 

maximum value (𝑐∗ = 1) after a given time. For example at 𝑥∗= 4, for 𝑡∗ = 0.25, 𝑐∗ = 0.02354; for 𝑡∗ =
0.5, 𝑐∗ = 0.8515; for 𝑡∗ = 0.75, 𝑐∗ = 0.9999; and for 𝑡∗ = 1, 𝑐∗ = 0.9999. When advection dominates the 

flow, spreading is minimal with the cloud of pollutant being simply moved along by the flow. This is because 

the pollutant is transported downstream very first and has less time to spread. We also observe that for a fixed 

time, concentration decreases with increasing distance. For example, when 𝑡∗ = 0.5: for 𝑥∗ = 1, 𝑐∗ =
1, for 𝑥∗ = 2, 𝑐∗ = 1, for 𝑥∗ = 3, 𝑐∗ = 0.9553, for 𝑥∗  = 4, 𝑐∗ = 0.8515; for 𝑥∗ = 5, 𝑐∗ = 0.7009; for 𝑥∗ =
6, 𝑐∗ = 0.4553, for 𝑥∗ = 7, 𝑐∗ = 0.2273, for  𝑥∗ = 8, 𝑐∗ = 0.08369, for 𝑥∗ = 9, 𝑐∗ = 0.02209, and for 

  𝑥∗ = 10, 𝑐∗ = 0.005173. Due to significant effect of the process of advection in transporting molecules 

downstream, we note that at any point, there are pollutant molecules present at downstream especially for 

0.5 ≤ 𝑡∗ ≤ 1. 

 

Comparison of pollutant concentration for different Peclet numbers across the domain 0 ≤ 𝑥∗ ≤ 10 at a fixed 

time (𝑡∗ = 0.5) is provided in Table 2: 

 

Table 2: Table Showing Pollutant Concentration for Various 𝒙∗ and Pe 

𝑥∗ 𝑃𝑒 ≪ 1 𝑃𝑒 ~ 1 𝑃𝑒 ≫ 1 

1 0.559400 0.761600 1.000000 

2 0.239300 0.458800 1.000000 

3 0.076090 0.209600 0.955300 

4 0.017650 0.070620 0.851500 

5 0.004327 0.023460 0.700900 

6  0.000551 0.004379 0.455300 
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7  0.000000 0.000580 0.227300 

8 0.000000 0.000000 0.083690 

9 0.000000 0.000000 0.0220900 

10 0.000000 0.000000 0.005173 

 

Comparing the three cases of varying Peclet number, at a fixed time say 𝑡∗ = 0.5,  it is observed that at any 

point 𝑥∗, concentration is much higher for 𝑃𝑒 ≫ 1 as compared to when 𝑃𝑒 ≪ 1 and 𝑃𝑒 ~ 1. When flow 

velocity is significantly higher than diffusion, more pollutant molecules are transported downstream faster than 

they are spread around the source point. The effect of bulk transport of pollutant molecules is also seen at the 

downstream for 𝑃𝑒 ≫ 1  where concentration is evident unlike the two cases where 𝑃𝑒 ≪ 1 and 𝑃𝑒 ~ 1.  

 

3.3. Effect of Temporally Varying Velocity and Dispersion Coefficients on Pollutant Concentration 

To study the effect of time dependent dispersion (𝐷(𝑡) =  𝐷0𝑓1(𝑚𝑡)) and velocity coefficients (𝑈(𝑡) =
 𝑈0𝑓2(𝑚𝑡)) on concentration, 𝑓𝑖(𝑚𝑡)for 𝑖 = 1,2  was considered to be an exponential function of time.  

Simulations were obtained at a fixed time (𝑡∗ = 1) using 𝑃𝑒 ~ 1 for four different combinations of 𝑓𝑖(𝑚𝑡) 

for 𝑖 = 1,2.  

 

Table 3:  Summary of Different Combinations of 𝒇𝒊(𝒎𝒕);  𝒊 = 𝟏, 𝟐 

𝒇𝟏(𝒎𝒕) 𝒇𝟐(𝒎𝒕) Description of dispersion 𝑫(𝒕) =  𝑫𝟎𝒇𝟏(𝒎𝒕)) in a flow of 

velocity 𝒖(𝒕) =  𝑼𝟎𝒇𝟐(𝒎𝒕) 

𝑒𝑚𝑡 𝑒𝑚𝑡 Exponentially increasing dispersion in an exponentially 

accelerating flow 

𝑒𝑚𝑡 𝑒− 𝑚𝑡 Exponentially increasing dispersion in an exponentially 

decelerating flow 

𝑒− 𝑚𝑡 𝑒𝑚𝑡 Exponentially decreasing dispersion in an exponentially 

accelerating flow 

𝑒− 𝑚𝑡 𝑒− 𝑚𝑡 Exponentially decreasing dispersion in an exponentially 

decelerating flow 

 

Simulation obtained for various time dependent advection and diffusion coefficients given in Table 3 are 

provided in Figure 3: 

 
Figure 3: Plot of 𝒄∗ against 𝒙∗ when 𝒕∗ = 𝟏, for Different Time Dependent Diffusion and Velocity 

Coefficients 
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It is observed that at any fixed point, concentration is lower when both velocity and dispersion coefficients are 

exponentially increasing with time. For example, when 𝑥 = 2, 𝑐∗ = 0.09349. When both flow velocity and 

dispersion parameters are increasing with time, there is rapid mixing of pollutants after injection and  immediate 

transportation of pollutants downstream occur simultaneously such that very few pollutant molecules are left 

around the source point in the shortest time possible. Concentration is however found to be higher when both 

velocity and dispersion coefficients are exponentially decreasing with time, (𝑥 = 2, 𝑐∗ = 0.4026)   as compared 

to the former case. This would be attributed to accumulation of pollutant molecules within the medium since 

spreading and transportation processes takes place at a much slower rate. There is no significant difference in 

concentration obtained when an exponentially decreasing dispersion in an exponentially decelerating flow (𝑥 =
2, 𝑐∗ = 0.4226) is compared to that of exponentially increasing dispersion in an exponentially decelerating flow 

(𝑥 = 2, 𝑐∗ = 0.4217). It is further observed that concentration is highest (𝑥 = 2; 𝑐∗ = 0.4420) when we have 

exponentially decreasing dispersion in an exponentially accelerating flow. Again, because of less dispersion 

effect there tends to be increased accumulation of pollutant molecules.  

 

4. CONCLUSION 

We have noted that concentration generally increases around the source point and gradually decreases with 

increasing distance from the source point.  At some far point from source, the concentration values converge to 

very small positive constant, almost zero. This implies that if we manage to maintain low pollutant levels at 

source point then the water downstream will be safe for human consumption. The simulations generally show 

skewness in the longitudinal distribution of the concentration with the average concentration being more 

downstream to the original source. The skewness is as a result of imbalance between the advective and 

dispersive processes. When varying Peclet numbers, we note that concentration is highest for 𝑃𝑒 ≫ 1.  

Physically, 𝑃𝑒 ≫ 1  represents surface waters in mountain regions, where the stream/ river is characterized by 

large velocities which makes advection more significant while 𝑃𝑒 ≪ 1 represents surface waters in plain areas 

where advection is characterized by smaller velocities. The results can be applied in many physical situations 

described by advection diffusion phenomena to help in the planning and management of rivers flowing through 

cities.  
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